
Organizing for Successful Software Development 
 

BY: Marc Hamilton in conjunction with Harris Kern’s Enterprise Computing Institute 
 
Many CIO’s recognize that the organizational structure of their software development group has an impact on 
the success of their application development efforts.  Unfortunately, there is not always the same level of 
consensus between CIO’s on what the correct organizational structure should be.  By defining the 
organizational structure and examining its importance to successful software development through different 
types of organizational structures, along with their pros and cons.  Sample organization charts are given 
small, medium, and large software development organizations.  We’ll discuss also centralized versus 
decentralized organizations and the use of virtual project teams. 
 
The Dimensions of an Organization 
 
An organization is defined by much more than boxes containing job titles and names 
connected by lines representing a reporting structure.  Besides organizational structure, the 
multiple dimensions spanning the people, processes define an organization, and technology 
represented within it.  Some of these dimensions include: 
 

• People Dimensions:  Each individual in an organization has certain 
skills, and these skills are typically measured against formal or 
informal performance metrics leading to rewards (compensation) as 
incentives for future performance.  The people in an organization 
establish its culture, those behavior patterns and values that are 
generally recognized as being adopted. 

 
• Process Dimensions:  The procedures and methodologies used by 

people in the organization.  Almost all organizations define their own 
internal economies through processes for budgeting, priority settings, 
and project approval. 

 
• Technology Dimensions:  The specific skills and tools people in 

the organization use to carry out the business function of the 
organization. 

 
 
The Importance of Organizational Structure 
 
Of the different people, process, and technology dimensions of an organization, structure is 
by far the most fundamental.  Without a sound structure, people in the organization lose 
their culture and compete for individual rewards rather than for the good of the 
organization.  Without structure, processes have no home and internal economies collapse 
because of conflicting objectives.  Without structure, technology is no longer pursued as a 
research interest rather than for the good of the organization.  While these concepts hold 
true for any information technology organization, they are especially true for software 
development organizations, no matter what their size. 



 
Many a small software startup begins life with no more than a couple of developers working 
out of a garage.  Not much organizational structure is required at this point in a company’s 
history, however organizational structure still exists.  For instance, in 1977, when Bill Gates 
and Paul Allen formed their partnership and officially named it Microsoft, the company had 
minimal organizational structure.  Less than a dozen employees worked at Microsoft’s first 
office in Albuquerque, New Mexico, and everyone knew who was in charge.  No 
complicated organization charts were needed to figure out everyone’s reporting structure.  
At the same time, all employees knew what their role was in the company and what they 
were trying to accomplish.  This was because any organizational structure that was needed 
could be informally communicated between each of the employees. 
 
At the other end of the spectrum are IT departments of Fortune 500 companies, large 
independent software vendors, and commercial system integrators.  An entry-level 
programmer at Microsoft today probably needs several different organizational charts to 
show the reporting structure among 20,000+ employees and up to Bill Gates.  Having 
organization charts alone, unfortunately, is no guarantee of a healthy corporate structure.  In 
any large organization, there are many dimensions to measuring the success of the 
corporation’s structure.  While no organizational model fits all development departments, 
certain traits stand out among companies that routinely produce successful software 
products. 
 
 
Streamlining Bureaucracy 
 
One of the side effects many development organizations have suffered as they grew has 
been increased bureaucracy.  Although we focus on people and process issues, the aim is to 
help streamline bureaucracies, not develop new ones  For instance, at some companies, a 
standard operating procedure is that, with few exceptions, no document shall ever require 
more than two approvals, one from the person who authored the document and one from 
the final approver.  Besides empowering employees, this makes it very simple to place blame 
when an incorrect decision is made.  In addition, this removes the possibility for two 
superiors to reject a document and send it back to the original author with conflicting 
modifications. 
 
 
Sample Organizational Structures 
 
The next four sections describe alternative organization schemes commonly found in 
software development departments: 
 

• Project centered organizations 
• Department centered organizations 
• Matrix organizations 
• Product line organizations 

 



While none of the above will be perfect for every software development group, they each 
offer useful ideas for coming up with your organization scheme. 
 
 
Project Centered Organizations 
 
Organizations centered on project teams are typically found in smaller or newly formed 
groups.  A project centered organization approach is suitable for groups of about 5 to 40 
people supporting 1 to 8 projects of small to medium duration, perhaps up to a year each.  
In such an organization, each group is primarily self-sufficient and is staffed by enough 
skilled developers to address every stage of the development life cycle.  This in turn means 
most individuals will have responsibility for some facet of development other than just 
programming, such as requirements, architecture, configuration management, or testing. 
 
As development organizations grow larger, project centered organizations become less 
desirable.  At one level, the number of projects grows to outstrip the needed specialty skills 
so you cannot provide a developer with the needed skills to each project.  Another problem 
is specialist knowledge and even general skills tend to not be shared between individual 
projects that are operating in their own microcosms.  As organizations outgrow project-
centered organizations they often reorganize into department-centered organizations. 
 
 Department Centered Organizations 
 
Department centered development organizations start to become practical as a group grows 
above 25 developers or 5 projects.  At these staffing levels, there are sufficient people to 
form multiple departments centered on particular software skills or life cycle areas.  For 
instance, a 40-person group might have departments for: 
 

• System and database administrators 
• User interface programmers 
• Application programmers 
• Configuration management, test, and quality assurance 

 
A common mistake in department-centered organizations is to break software architects into 
a separate department or group.  We have found this can lead to elitism and be very 
counterproductive.  First, it starts to separate the architects from the developers who are 
doing the actual implementation.  Architects thus become more quickly out-of-touch with 
the latest development methodologies actually being used.  Also, while every developer does 
not want to be an architect, every developer likes to have some say in the design.  If 
developers are too separated from architects, they may have a built-in incentive to prove the 
architect’s design was wrong by not working there hardest to implement it.  When this 
happens the architect will most likely blame the problem on developer incompetence than 
on any architectural flaws.  The whole iterative development process becomes harder to 
implement smoothly. 
 
 



Matrix Organization  
 
When your development organization grows to several hundred people or more, you may 
want to consider a matrix organization.  Matrix organizations are sometimes used in 
companies with a large number of software developers working on a broad array of software 
projects.  One side of the matrix is organized along skill sets while the other side of the 
matrix is organized across projects.  In a matrix organization, every developer has two 
managers.  One manager is from the department or skill set matrix and one manager is from 
the project matrix.  A developer typically stays in a single department for as long as he or she 
continues working in that skill area.  A developer would only stay on a project for the length 
of time his or her particular skill was needed and then return to his or her department for 
another assignment.  Table 1-1 shows how employees might be assigned from different 
departments to several different projects.  As shown in the table, not all departments 
necessarily have employees working on all projects. 
 
Table 1-1 Sample Personnel Assignments 
Department Project 1 Project 2 Project 3 
Requirements 
Analysis 

John Kevin Betty 

Business Systems Steve, Nancy Carol Bruce 
Web Development David  Barbara 
Operating Systems Charlie Jeff  
Real-time Processing   Lisa 
Configuration 
Management 

Brian Peter Frank 

Integration and Test Joe, Henry Dan, Tim Leslie 
 
Individual departments are responsible for hiring and training developers and supplying 
them to projects as needed.  Department managers work with project managers to properly 
forecast requirements and equitably assign developers to projects considering the best 
interests of the corporation. 
 
A matrix organization obviously requires a certain minimum size to sustain the overhead of 
two management chains.  One challenge with such an organization is to develop the right 
number and mix of departments.  Another challenge is to sustain developer loyalty to 
projects when their long-term management lies in the department organization.  Because of 
these issues, a product line organization is often bettered suited. 
 
 
 
Product Line Organizations 
 
In a product line organization, developers are organized into projects based on business 
product lines as opposed to skill set departments.  A product line organization is responsible 
for staffing the skill sets required for its project mix.  For instance, one product line might 
have requirements analysts, OS experts, some web developers, and configuration 
management.  Another product line might have requirements analysts, real-time coding 



experts, and configuration management.  This works if product line organizations are 
sufficiently large that enough developers exist to staff duplicated functions throughout 
departments.  The downside is that software projects will most often require different sets of 
skill levels at different times in the software life cycle.  Each product line must always have 
sufficient resources to staff for peak periods while worrying about the lulls in-between. 
 
 
Recurring Organizational Themes   
 
When choosing how to organize your software development organization, these recurring 
themes and concepts are ones you should address: 
 

• Creating a software process team  
• Balancing centralized versus decentralized organizations 
• Managing virtual teams 

 
 
Creating a Software Process Team 
 
Regardless of organization, every development organization should have a software process 
team.  This team, made up of representatives from each software skill area, should be tasked 
with developing standard processes used throughout the organization.  These individuals can 
thus become process “experts” that help train the rest of the organization. 
 
 
Balancing Centralized Vs.  Decentralized Organization 
 
Most IT groups have experimented with different mixes of centralized versus decentralized 
organizations.  The arguments on both sides are well-known.  Centralized organizations 
generate economies of scale and provide developers the most opportunity to specialize.  A 
development group of 50 people can probably have several specialists in user interface 
development.  Break that same organization down into 10 groups of five and no group may 
be able to afford a dedicated user interface or other specialist.  The down side of centralized 
organizations are they often are not responsive to individual business unit demands, 
especially to smaller business units.   In theory, a decentralized development group dedicated 
to an individual business unit can be more responsive to local needs. 
 
Our suggestion is to keep a small centralized development organization for enterprise-wide 
systems and for company-wide architecture issues.  Individual business units should be 
responsible for developing their own local applications. 
 
 
Managing Virtual Teams 
 
Static software development organizations worked well when software was limited to a 
small, well-defined, and static set of functions within an organization.  Today, business 
requirements often may call for the creation of virtual teams that span across all aspects of a 



company, not just its development organization.  The classic example is the marketing 
department that decides the company needs to have an electronic commerce web site.  
Besides the IT and marketing departments, this might involve the legal department, the sales 
department, product departments, and the art department.  Today’s business drivers mean 
such teams need to be able to come together, perform their function, turn over a product for 
maintenance, and disband to go off to other jobs, perhaps several times a year or more. 
 
Figures 1-1 through 1-3 show sample software development organization charts for different 
sized software development organizations.  There are many different types of development 
organization structures you could come up with besides those illustrated below.  Following 
the concepts presented, you should tailor one of these organization charts to best suit the 
requirements of your group. 
 
Figure 1-1 Small Corporate Software Development Department 
 
   
 
 
 
       Lead Software Architect 
 
 
    
            
  Developer 1            
                 
  Developer 2         
  Developer 3         
                  Developer 4        
         Developer 5 
 
            
            
            
            
            
       Architect 1    
            
                     Architect 2   
            
                  Architect 3  
            
            
            
            
 Project 1  Project 1  Developer 1    
            
   Project 2  Project 2  Developer 2  

Software 
Development 
Director 

Development 
Testing 

Testing Manager 

VP Software 
Development 

Chief  
Architect 

Dir. Client 
Applications 

Dir. Server 
Applications 

Dir. 
Sustaining  
Engineering



            
     Project 3  Project 3 
 Developer 3          
         Project 4 
 Project 4  Developer 4      
 Project 5  Project 5  Developer 5 
 
 
Figure 1-2 Medium Corporate Software Development Department   
            
            
            
            
            
            
            
            
            
            
            
               Architect 1 
            
          
 Architect 2          
            
  Architect 3         
            
            
     Project 1      
        Project 1   
  Developer 1    Project 2  Project 2 
    Developer 2       
         Project 3 
 Project 3           Developer 3   
 Project 4          
    Project 4     
 Developer 4   Project 5      
        Project  5   
  Developer 5 
 
Figure 1-3 Large Corporate Software Development Department 
 
 
 
 
 
 
 

VP Software 
Development 

Chief 
Architect 

Dir. Client 
Applications 

Dir. Server 
Applications 

Dir. 
Sustaining 
Engineering 



Thirteen Organizational Structure Mistakes 
 
No matter the size of your software development organization, there are certain mistakes 
you want to avoid.  Many cultures consider thirteen to be an unlucky number, so we have 
drawn from other developers mistakes to list the thirteen organizational structures that 
frequently fail, no matter how lucky the manager feels.  Good organizational structure is a 
matter of management theory, science, and experience, not luck.  So here are our “unlucky 
thirteen” mistakes to avoid. 
 
#1  Combining software development and operations into a single organization. 
 
The job of operations is to keep applications up and running.  The easiest way to do this is 
to never change anything.  Combining development and operations into a single 
organization has the natural tendency to stifle innovation.  Software development 
organizations should be separated from operations to allow new and modified applications 
to be developed as required to support the business needs of the company. 
 
#2  Organizing software technology specialists by project. 
 
A modern day software development project requires a wide range of software specialists 
during different times in the software life cycle.  If you have a small organization with only 
one specialist and two projects, it is clear the specialist needs to work on both projects, 
perhaps at different times.  As your organization grows and develops more specialists, you 
still want to have specialists work across projects wherever and whenever they are most 
needed.  What happens if you assign technology specialists by project and each project ends 
up having a small number of specialists that must act as generalists while doing the work of 
another specialist assigned to a different project?  The result your organization as a whole 
cannot take advantage of all its specialists where they are most needed and fails to take 
advantage of the synergies of being one integrated development organization. 
 
#3  Organizing software technology specialists by application domain (i.e., financial, 
manufacturing, etc.). 
 
This results in the same problem as mistake number 2, above.  Given a fixed headcount, 
each application domain receives a smaller group of specialists who therefore are driven to 
become more generalists.  There is no room for software technology specialists that span 
across application domains, for instance a GUI design specialist. 
 
 
 
 
 
 
 
#4  Organizing software developers by delivery platform (i.e., Windows, Unix, and 
mainframe). 
 



Developers tend to naturally develop biases in favor of their assigned platform.  As a result, 
there tends to be little or no innovation in new platforms (for instance, network computers) 
or cross-platform approaches (for instance, web top computing or client- server systems). 
 
#5  Separating software development and software maintenance groups. 
 
When you separate software development and software maintenance groups, you end up 
requiring the same types of software specialists for each group.  This means you either have 
to double headcount in your organization for specialists or force one group to reduce 
specialization.  In addition, it becomes harder to create incentives for software developers to 
do things right the first time as they know another group will ultimately be responsible for 
fixing any mistakes.  In addition, such an organization tends to develop two classes of 
software developers, leading to morale problems. 
 
#6  Representing projects in the formal organizational structure Vs. defining project 
teams that cut  across organizational boundaries.  
 
This leads to a re-organization whenever a major project ends. As a result, software 
developers spend an inordinate amount of time looking for their next job or find 
unnecessary reasons to prolong their existing project. 
 
#7  Organizing software developers into long-term and short-term development 
groups. 
 
Once again, this type of organization requires two of every software specialist and builds 
unnecessary competition between the two groups.  In addition, this organization often 
encourages point solutions that may be quicker to implement but cost more in the long term 
because of higher maintenance costs and difficulties in integrating with enterprise-wide 
applications. 
 
#8  Designing organizations that need “super-developers” to succeed. 
 
In today’s complex software development environments, no single developer can be a 
specialist in all fields.  The organization should allow and reward developers who become 
true specialists in a single field.  Also, the workload should be managed to allow software 
developers to lead balanced lives.  No one can work eighteen hours a day forever and be 
expected to maintain his or her work quality and personal satisfaction. 
 
 
 
 
 
 
#9  Designing organizations that tolerate underachievers. 
 
This is the corollary of mistake number 8.  A healthy organization employs everyone’s 
complete range of talents to their fullest.  Software developers who are allowed to 



underachieve will become bored with their work, which will only lead to poorer quality and 
further underperformance.  
 
#10  Designing organizations that reward empire buildings. 
 
Organizational structures should eliminate all incentives for empire building.  This means 
providing equal career paths for both senior level software engineers and software 
development managers.  Along the same lines, career paths should be provided both for 
software generalists and software specialist, as both are needed in a healthy organization. 
 
#11  Setting organizational goals that compete against each other for customer 
satisfaction. 
 
Customer satisfaction should be the ultimate goal of all software development organizations.  
One organization should not have goals whose achievement effects the customer satisfaction 
of another organization.  For instance, if two development groups are working on 
applications for the same customer that must ultimately be integrated together, one 
organization should not be rewarded for meeting its timelines if this was only done at the 
expense of creating a more difficult integration task for the second group. 
 
#12  Organizing around individuals Vs. personality types. 
 
Every experienced software development manager recognizes the importance of matching a 
developer’s job to their personality; however, even in the most stable of organizations, 
individuals come and go.  You should not therefore, design organizations around individual 
personalities.  Instead, organize them around more general personality types.  This allows 
them to recognize the value of individual diversity without having to reorganize every time 
someone comes and goes. 
 
#13  Mandating organizational changes from the top down. 
 
There comes a time when all software development organizations must change to adopt to 
new business models, technologies, or clients.  However, mandating a structural change has 
little or no effect if it is not accompanied by cultural and process changes.  The best way to 
assure successful change is to manage it via a participative process where all developers are 
given a chance to affect the final outcome. 
 


